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Supplementary Figure 1: Sequences of automatically detected aggressive actions, courtship 
actions, and chasing.  (a) Lunging, tussling and wing threat. Only a selection of frames is shown. 
Time index in seconds is relative to the first frame in each action movie clip. A black dot is placed 
near the fly that is performing an action. Frames are shown at half of the original resolution.   Bars, 
1 mm.
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Supplementary Figure 1: Sequences of automatically detected aggressive actions, courtship 
actions, and chasing.  (b) Wing extension, circling and copulation (start and end phase). Time 
index is relative to the first frame in each action movie clip. For copulation the time index is absolute, 
starting with the beginning of the assay [MM:SS] (minutes, seconds). As illustrated by the example, 
wing extension can occur in combination with circling. Copulation usually lasts for 16-18 minutes.  
(c) Chasing is common to both aggression and courtship. Only a selection of frames is shown. Time 
index in seconds is relative to the first frame in the movie clip. A black dot is placed near the fly that 
is performing an action. Frames are shown at half of the original resolution. Bars, 1 mm.
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Supplementary Figure 2: Frequency and time spent performing actions.  (a-c) Octopamine 
control (tdc2/+, n = 20) and mutant (tdc2/kir, n = 20).  (d-i) CS male-male (n = 20), male-female (n = 
24), and Cha-Gal4;UAS-tra (“Cha-Tra”, n = 10).  (a,g) Total time spent in aggressive activity.  (b,e) 
Number of chases.  (c,f) Total distance traveled per fly.  (d) Total time spent in courtship. (h) Total 
time spent chasing.  The octopamine mutant (tdc2/kir) shows a lower level of aggressiveness com-
pared to the control line (a).  The octopamine mutant shows no statistical significant difference in 
locomotor activity, in comparison to controls (b,c).  CS and Cha-Tra male-male pairs differ by their 
level of locomotion (e,f).  Cha-Tra males are significantly more active than CS males (h).  (i) Copula-
tion beginning and end time points. 21 out of 24 CS male-female pairs successfully copulated. Data 
represent mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Figure 3

Supplementary Figure 3. Distribution of lunges over time. (a,b) Octopamine control (tdc2/+, n = 
20) and mutant (tdc2/kir, n = 20).  (c,d) CS male-male (n = 20) and Cha-Gal4;UAS-tra (“Cha-Tra”,   
n  = 10) pairs. Each spike in the upper part of the panels represents one lunge, and each row of 
spikes one fly pair. The histogram integrates the number of lunges over the fly pairs in one minute 
bins. The octopamine mutant (tdc2/kir) (b) shows a lower level of aggressiveness compared to the 
control line (a). Cha Tra males (d) are significantly more aggressive than CS males (c). 
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Supplementary Figure 4. Frequency and time spent performing actions for fruF. (a) Number of 
lunges, (b) tussling, (c) lunges per meter, and (d) wing threats. fruF shows a significantly lower level 
of aggressiveness compared to the control line. Data represent mean ± s.e.m. (CS: n = 16, fruF:         
n = 22). ***P < 0.001.
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Supplementary Figure 5

Supplementary Figure 5.  Frequency of fly positions for aggressive actions, chasing and 
courtship actions.  (a) Lunges (top), tussling (center row), and wing threat (bottom), for wild-type 
(CS) male-male (left, n = 20), male-female (center column, n = 24), and Cha-Gal4;UAS-tra 
(“Cha-Tra”) male-male (right, n = 10) fly pairs. The color codes correspond to the cumulative sum of 
episodes of an action over all fly pairs. CS males perform neither lunging nor tussling, towards 
females and exhibit rare wing threats.  The Cha-Tra males exhibit increased lunging and tussling.  
Additionally, Cha-Tra males perform a greater proportion of lunging and tussling on the food patch.
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Supplementary Figure 5.  Frequency of fly positions for aggressive actions, chasing and 
courtship actions.  (b) Chasing, for wild-type (CS) male-male (left, n = 20), male-female (center 
column, n = 24), and Cha-Gal4;UAS-tra (“Cha-Tra”) male-male (right, n = 10) fly pairs. The color 
codes correspond to the cumulative sum of episodes of an action over all fly pairs.  Cha-Tra males 
have a highly increased locomotor activity.  (c) Circling (top) and wing extension (bottom).
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Supplementary Figure 6

Supplementary Figure 6. Software modules of the "Caltech Automated Drosophila 
Aggression-Courtship Behavioral Repertoire Analysis (CADABRA)".  (a) Graphical user inter-
face of our system for automated tracking and feature extraction (”QTrak”, Windows version). The 
software is shown while processing a movie. Both flies are labeled by the program, providing infor-
mation on the identity, center of ellipse, head direction and previous positions of each fly. The right-
hand side shows the actual frame number and time point.  (b) Graphical User interface for post-
processing the tracking information (”ANALYSIS”, Windows version). This software allows the user 
to select the tracking data, assign them to different genotypes, edit the genotype information, detect 
actions, plot 2D action histograms, statistics, ethograms, as well as produce movie clips for all 
actions detected.



Supplementary Table 1: Features, extracted by the tracking module 
per frame and fly.

feature description
1 x and y position at time t (center of ellipse)

2-3 fly length (major axis of ellipse) and fly area
4-5 position of head and abdomen
6 orientation Θ (direction from center of ellipse to the head)

7-11 moving direction Θmove, wing length lL, lR and wing angle - 
left ΦL and right side ΦR

12-13 velocity vx, vy and acceleration ax, ay

14-15 position and orientation change from t - 1 to t
16 difference between orientation Θ and moving direction Θmove

17 distance to chamberʼs center (food-defending)
18-19 distance Δc and change of distance δΔh-c from t - 1 to t 

between center of ellipses
20 angle Θ12 between center of ellipse and head-direction of 

one fly and position of the other fly (lunging)
21-24 head-head Δh-h, abdomen-abdomen Δt-t, and head-

abdomen Δh-t distance and change of distance
25 angle Θw12 walking direction difference between both flies



Supplementary Table 2: Lunging feature ranges for pre-selection of 
possible lunges. ʻfly  1 or 2ʼ denotes the fly (1-2: measured between fly 1 
and 2) and ʻtimeʼ gives the time point t of feature extraction.

feature fly 1 or 2 time rangerange unit
min max

velocity 1 t 0.5 200 mm/s
velocity 2 t 0 20 mm/s

acceleration 1 t 15 2000 mm/s2

fly length t-1 <  fly length t 1 mm
length 1 t, t - 2 0.8 2.5 mm

Θ12 1-2 t - 1 0 45 º
position change 1 t 0.05 5 mm

δΔh-c 1-2 t - 1, t 0 1 mm
Δc 1-2 t 0.9 4 mm
δΔc 1-2 t -2.1 -0.15 mm



Supplementary Table 3: Features, used for final decision (lunge or no 
lunge) based on pre-selected frames (Supplementary Table 2). ʻfly 1 or 2ʼ 
denotes the fly (1, 2: measured for fly  1 and 2; 1-2: measured between fly 1 
and 2) and ʻtimeʼ gives the time point t of feature extraction.

feature fly 1 or 2 time

velocity 1,2 t
acceleration 1,2 t - 1

fly length 1 t - 2, t - 1 
Θ12 1-2 t - 1
Δc 1-2 t
δΔc 1-2 t - 2 → t - 1

position change 1 t - 1 → t



Supplementary Table 4: Tussling feature ranges and maintenance 
period. ʻfly 1 or 2ʼ denotes the fly (1, 2: measured for fly 1 and 2; 1-2: 
measured between fly 1 and 2) and ʻtimeʼ gives the time point t of feature 
extraction. ‚Body alignmentʻ is the orientation (with 180º ambiguity) 
difference between both flies.

feature fly 1 or 2 time rangerange unit maintenance 
period

min max
velocity 1,2 t 10 ∞ mm/s

≥ 0.3 s

acceleration 1,2 t 80 ∞ mm/s2

≥ 0.3 schange of pos. change 1-2 t - 1, t 0 1 mm ≥ 0.3 s
Δc 1-2 t 0 1.7 mm

≥ 0.3 s

body alignment 1-2 t -30 30 º

≥ 0.3 s



Supplementary Table 5: Wing threat feature ranges and maintenance 
period. ʻfly 1 or 2ʼ denotes the fly (1-2: measured between fly 1 and 2) and 
ʻtimeʼ gives the time point t of feature extraction.

feature fly 1 or 2 time rangerange unit maintenance 
period

min max
angle of both wings 1 t - 1, t 30 80 º

≥ 0.3 s

length of both wings 1 t - 1, t 1.1 1.9 mm

≥ 0.3 svelocity 1 t - 1, t 0.01 5 mm/s ≥ 0.3 s
Δc 1-2 t 2 30 mm

≥ 0.3 s

Θ12 1-2 t 0 100 º

≥ 0.3 s



Supplementary Table 6: Wing extension feature ranges and 
maintenance period. ʻfly 1 or 2ʼ denotes the fly and ʻtimeʼ gives the time 
point t of feature extraction.

feature fly 1 or 2 time rangerange unit maintenance 
period

min max
wing angle ΦL or ΦR 1 t 60 90 º

≥ 1 swing length lL or lR 1 t 1.1 2.5 mm ≥ 1 s
fly length 1 t 1.2 ∞ mm/s

≥ 1 s



Supplementary Table 7: Circling feature ranges and maintenance 
period. ʻfly 1 or 2ʼ denotes the fly (1-2: measured between fly 1 and 2) and 
ʻtimeʼ gives the time point t of feature extraction.

feature fly 1 or 2 time rangerange unit maintenance 
period

min max
Δc 1-2 t 1 5 mm

≥ 0.7 s

δΔh-c 1-2 t - 1, t 0 5 mm

≥ 0.7 s

Θ12 1-2 t 0 20 º

≥ 0.7 svelocity 1 t 0.25 ∞ mm/s ≥ 0.7 s
velocity 2 t 0 5 mm/s

≥ 0.7 s

azimuthal velocity vaz 1 t 0.25 ∞ mm/s

≥ 0.7 s

wing not extended

≥ 0.7 s

or:
azimuthal velocity vaz 1 t 0.05 ∞ mm/s

≥ 0.7 swing extended ≥ 0.7 s



Supplementary Table 8: Copulation feature ranges. ʻfly 1 or 2ʼ denotes 
the fly (1-2: measured between fly 1 and 2) and ʻtimeʼ gives the time point t 
of feature extraction.

feature fly 1 or 2 time rangerange unit
min max

mean Δc 1-2 t ± 4.1s 0 2 mm
standard deviation Δc 1-2 t ± 4.1s 0 0.3 mm



Supplementary Table 9: Chasing feature ranges and maintenance 
period. ʻfly 1 or 2ʼ denotes the fly (1, 2: measured for fly 1 and 2; 1-2: 
measured between fly 1 and 2) and ʻtimeʼ gives the time point t of feature 
extraction.

feature fly 1 or 2 time rangerange unit maintenance 
period

min max
Δh1-t2 < Δh2-t1Δh1-t2 < Δh2-t1Δh1-t2 < Δh2-t1Δh1-t2 < Δh2-t1Δh1-t2 < Δh2-t1 mm

≥ 1 s

Δc 1-2 t 3 10 mm

≥ 1 s

δΔh-c 1-2 t 0 2 mm

≥ 1 sΘ12 1-2 t 0 45 º ≥ 1 s
Θw12 1-2 t 0 45 º

≥ 1 s

velocity 1,2 t 5 ∞ mm/s

≥ 1 s

position change 1,2 t 0.5 ∞ mm

≥ 1 s
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1 Arena

Our standard setup, as shown inFigure 1 (main paper), consists of four double arenas, each with

two arenas. An arena is made of teflon and has a rectangular base measuring 50 mm x 40 mm. A

square food patch with a side length of 10 mm is placed within the center of the arena. The food

patch is surrounded by 1% agar. Plexiglass walls, 115 mm talland coated with Fluon, surround the

arena. This chemical has properties similar to teflon and prevents flies from climbing the walls. A

plexiglass lid covers the arena. The prototype of the arena was recently developed1. The food is a

mixture of apple juice, sugar, and 1% agar. The recipe was described in2.

The resolution bottleneck of our system is measuring wing position: to do this we need

a resolution of at least 20 pixels per fly length (i.e., 10 pixels per mm assuming a fly length of

2 mm). Since our cameras have 640 x 480 pixel sensors, we can image a 64 mm x 48 mm area.
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Allowing for some space lost to dividing walls, this allows us to image an array of 3 x 4 arenas

that have 16 mm diameter as shown inFigure SM-1. This array follows a recently suggested and

used design3, 4. We found that this arena size is sufficient for measuring aggressive and courtship

behaviors in pairs of flies. This set-up is suitable for largegenetic screens with high-throughput.

2 Illumination and camera

A fluorescent ring-shaped light bulb (here: 22 W, 4100 K, 1100lumen, “Circline T9”, outside-

diameter = 8 in., white reflector) with white, visible light surrounds the arenas to produce ho-

mogenous and bright illumination conditions (Fig. 1, main paper). These light sources have the

additional advantage of being power efficient, which avoidsheating the arenas and further con-

densation of water at the arenas walls and ceiling. The illumination has to be bright enough to

provide sufficient contrast between background, fly body andwings. We measured a luminance of

850 cd/m2 for our double-arena set-up with a neon-ring light. However, the tracking software is

robust to changes in the overall level of illumination, which may be observed from experiment to

experiment and are due to changes in ambient illumination and small adjustment in the position

of the light source. A commercial color video CCD camera (24 bits/pixel, 640 x 480 pixel/frame,

30 frames/s, here: Sony DCR-HC 38) is placed vertically and downward-pointing above arena and

light source. We prefer a longer distance in order to obtain agood approximation of a parallel

projection; the distance is chosen first and the focal lengthis adjusted to fill the frame. This results

in a resolution of≈10 pixel/mm and≈20 pixel/fly, given a length of≈2 mm for a fly body.Figure

SM-2 shows a fly as seen by our current system.
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3 Computer

Two color video CCD cameras (each 24 bits/pixel, 640 x 480 pixel/frame, 30 frames/s), and there-

fore four arenas, are connected in parallel via IEEE 1394a interface (400 MBit/s) to a personal

computer, which allows digitization of the two video streams. For our experiments we used Intel

dual-core CPUs with≈3 GHz clock rate and at least 2 GB of memory. The video streams are cap-

tured and stored onto a hard disk using common video capturing software (here: Windows Movie

Maker or Windows Media Encoder). Color movies are recorded in both setups at a frame rate of

30 Hz. In our experiments each movie was 20 minutes long (36,000 frames).

In order to reduce file size, while maintaining an image quality that was sufficient for our

automatic analysis, we experimented with video compression techniques.Figure SM-3 presents a

magnified part of a frame using no compression as well as the same portion of frame compressed

using different video codecs. The uncompressed image preserves the object details with an under-

lying evenly distributed noise. MPEG-4 V2 shows slight compression artifacts around the detailed

objects and at edges. Windows Media Video 9 (WMV9) removes some amount of detail, as well as

noise, without producing visible artifacts. DivX shows severe compression artifacts around the flies

and produces spurious edges within the background. We chosethe WMV codec giving sufficient

quality and compressing 20 minute movies to sizes of≈300 MB, as opposed to an uncompressed

movie size of 33 GB. All data analysis and verifications were performed on compressed videos

(WMV9).
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4 Software

The software of our behavioral screening method consists ofsix modules: video import, ground-

truthing, calibration, fly detection and tracking (pre-processing), action detection (post-processing;

cf. main paper) and graphical user interface. The Video import routine was implemented in C, all

other routines in Matlab. Operation of the software is completely automated: all the user has to do

is specify which files have to be analyzed.

Video Import Our video import routine allows loading movies in any kind ofcompressed or

uncompressed format assuming the appropriate video codecsare installed on the system. For

speed optimization the routine decodes images in stacks of 100 frames.

Ground-Truthing For measuring the performance of our system, it is essentialto have validation

data, where the occurrence of any event of a particular action has been independently labeled. This

is the so-called ground-truth information and obtained from two experts: one manually annotating

a number of recorded movies, and another expert manually annotating the same movies. The

second expert makes the final decision to accept or reject theevents in the union of first and second

expert’s annotations. In addition, to identify any action events that were possibly missed by both

human observers, the automated system is run at a low threshold to identify all possible action

events. The second expert validates post-hoc any events identified by the automatic system, that

were initially missed by the human observers. The ground truth is then defined as the union of the

events identified and agreed on by the two human observers, together with any additional events

detected by the automatic system that could be validated post-hoc by a human observer. This
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procedure is designed to take advantage of both the low false-positive rate of humans and the low

false-negative rate of our system. Labeling software was developed and used for this purpose.

Figure SM-4 gives a screenshot of the graphical user interface of the labeling software module.

The software allows a biologist to scan a movie looking for instances of a given action, and to

mark the first and last frame of each video sequence where suchaction is observed. All collected

information is saved into a text file.

Calibration The tracking software (see below) needs to know the boundaries of each arena. We

call ‘calibration’ the process of obtaining such boundaries. The calibration process is fully au-

tomatic for the arena as shown inFigure 1 (main paper). The software detects the edges of the

food area using the Canny edge detector and morphological operators, and measures the length

and width of the food area in pixels. Once the pixel position and size of the food patch are known,

the position and size of the arena in the image are computed and used as the ROI. The ratio of the

arena and food patch sizes, and mutual positions of each, is known from the design specifications

of the arena. The calibration is automated in order to accommodate variations in the pixel size of

the arena due to (small) variations in camera placement, focal length of the lens, and arena size.

At times, a new type of arena will be introduced. We developedan “Arena surveying GUI”

in order to allow the user to measure the arena boundaries. The user draws the boundaries for each

arena within the first video frame. The number of arenas is unlimited. For the conversion from

pixel to millimeter, the user is asked to mark two points within the frame and provide their distance

in millimeters.
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Fly Detection & Tracking Here we give additional details on fly detection and tracking, which

are illustrated inFigure SM-5. Before tracking the flies each 24 bit color frame is converted into

a 8 bit brightness imageI. We used a mixture of two channels, 40% red and 60% green.

We start our analysis by detecting the flies in each frame. Flydetection is accomplished by a

sequence of five steps. In a first step the meanµI and standard deviation imageσI are determined

by averaging over 4000 randomly selected frames. The objects are separated from the background

by computing a ‘foreground image’FI :

FI = 1 −
I

µI + 3σI
. (1)

It is more common to compute(I−µI), but we found that our ratio provides a better signal-to-noise

(fly-to-background) separation than background subtraction and corrects for non-homogeneous

illumination5. It requires a background, which is brighter than the flies.3σI is added to the

background to consider cases where flies do not move over longperiods.

In a second step the fly bodies without the wings are segmentedfrom the foreground image

FI as shown inFigure 2a (main paper) by fitting a Gaussian mixture model (GMM)6 to the image

brightness of the foreground image (Fig. 2b, main paper). The GMM consists ofm = 3 components

and associates each component to either background (dashed), other image parts and body (solid

curves). Each component approximates the class-conditional probability density density function

(pdf) that the value of a pixel inFI belongs to either background, other image parts, or body (gray

curve):

p(FI) =
3

∑

m=1

p(FI |θm)p(θm) (2)
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where the mixing parameterp(θm) is optimized online and measures the fraction of pixels associ-

ated to component m and where
∑

m p(θm) = 1. Each mixture componentm is a Gaussian with

meanµ and covariance matrixΣ:

p(FI |θm) = N (FI |µm, Σm) (3)

The GMM is optimized by the Expectation Maximization (EM) method6. The EM is initialized

with µ, Σ of the previous frame. It should be noted that the EM requiresan a priori selection of

the model order, namely, the number of componentsm to be incorporated into the model. In order

to assign pixels to the fly body, the second and third pdf (other parts and body) are divided by the

sum of all pdfs. All pixels, whose foreground value is higherthan a threshold are selected as body

pixels. The threshold is defined to be the intersection of thesecond and third pdf (Fig. 2b, main

paper).

In a third step the fly body pixels obtained in the second step are grouped into connected sets

by using nearest-neighbor connectivity7.

In a fourth step an ellipse is fit to each connected component:we choose the smallest ellipse

containing all the pixels of the connected component (Fig. 2b, bottom-right, main paper). The

length of the major axis of this ellipse provides an estimateof the length of the body of the fly,

the orientation of the major axis an estimate of the fly’s orientation and the center of the ellipse an

estimate of the fly’s position.

The fifth step in fly detection is to extract the wings. Our approach is to first segment each
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fly (body, wings) from the background, and then subtract the body pixels, obtained in step two

above, in order to reveal the wings. This is not easy to accomplish: ideally background, body and

wings have differentFI pixel values due to the transparency of the wings. However, in many cases

background noise, video compression artifacts, as well as varying background patterns (border,

agar, food) make it hard to clearly distinguish between wings and background. We explored two

methods for overcoming this difficulty.

The first method fits a GMM taking into account the location andbrightness of each pixel

(X, FI) to segment the full fly from the background:

p(X, FI) =
∑

m

p(X, FI |θm)p(θm), (4)

wherep(X, FI |θm) is a Gaussian probability density function, and we assume that X and F are

independent. The second way applies a fast, nonparametric and unsupervised method of automatic

multi-threshold selection for image segmentation (optimal thresholds), whereas the optimal thresh-

olds are derived from the viewpoint of discriminant analysis8. Both methods may be applied to

those regions of a frame where fly bodies were detected.

After extensive testing the first method (GMM) was found to betoo slow due to the two

extra degrees of freedom and the numerous iterations necessary to fit the model. The method of

optimal thresholds is 5-10x faster than the first method. Furthermore, it is better in segmenting

non-Gaussian shapes.

To quantify the performance of both methods for wing segmentation we developed a GUI
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which picked≈15,000 foreground images, segmented them by applying both methods. The GUI

presented foreground image, optimal thresholds and the GMMsegmentation side-by-side to an

expert, who was asked to evaluate whether none, one, or both segmentations had properly iden-

tified the pixels belonging to the body and to the wings. 300 samples were randomly chosen for

evaluation. Good segmentation was delivered in 96.3% of these images using optimal thresholds,

and in 59.0% using GMM.Figure SM-6 shows the performance of both methods on a selection of

problematic, non-standard situations.

Based on these results, we utilized the method of optimal thresholds.Figure 2c (main paper)

shows a resulting segmentation where the body, wings and background are highlighted by different

colors.

The orientationΘ of a fly is computed as the orientation of the major axis of the ellipse

fitting and has a 180◦ ambiguity (Fig. 2e, main paper). To remove this ambiguity the location of

head and abdomen have to be determined. To do so, we make use ofthe combination of three

sources of information: (1) the different visual appearance of the head and tail segment of each

fly, (2) fly motion (when flies walk, they tend to move forward),and (3) consistency with pre-

vious frames. (1) Head-tail appearance is computed by dividing the fly along the minor axisb

(dashed line) and comparing the brightness-value distribution of the two parts (Fig. 2c, bottom,

main paper). Transparent wings and abdomen have a differentbrightness-value distribution than

the head region and allow to distinguish between head and abdomen. We label ‘head’ the end of

the fly whose brightness histogram of the foreground image has brighter values. (2) Retrieving the
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head-abdomen position only by analyzing the fly’s movementsis problematic, because often flies

do not move (feeding, grooming, or sleeping) and sometimes they may slowly move backwards.

In situations where the wings are not visible or poorly imaged, if the fly velocity is above an em-

pirical threshold (unambiguous forward fly motion), the software uses the fly’s moving-direction

to decide for head-abdomen position. (3) When brightness information is ambiguous and the fly is

not moving, moving slowly, or when two flies are in close proximity (<1.5 fly body lengths) the

fly tracking information of the previous frame is used to assign head-abdomen orientation.

After determining the position of the fly’s head and abdomen the wings are measured in each

frame. Figure 2c, bottom andFigure 2d (both main paper) illustrate the measurement of wing

length and wing angle.

The formerly discussed GUI for verification of the full fly segmentation was used to retrieve

ground truth on wing angles. In addition to voting for the segmentation completeness, the expert

was asked to click on the head, abdomen, and the tip of left andright wings in the foreground

image for the same 300 random samples.Figure SM-7 compares automatically measured wing

angles, using optimal thresholds segmentation results of full flies, with ground truth data provided

by the human expert. The correlation coefficient is 0.94 witha standard deviation of 7.9◦ (bias

= 0.4◦ towards automated measurements), including 4 head-tail swaps (triangles) and 11 segmen-

tations that were voted as not complete (crosses). The incomplete segmentations led, however,

to reasonable wing angles in most cases. The post-processing software (Supplementary Fig. 6b

online) resolves problematic issues by analyzing past and current fly orientations as well as wing
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angles. The software assigns both fly orientations and wing angles to the most likely value.

The fly detector will detect a single object when the two flies are very close. This anomalous

situation is flagged automatically by applying a threshold on the area of the detected object. In this

case the system applies a GMM with m = 2 Gaussians using pixel locationX and pixel brightness-

valueFI (cf. eq. 4) to resolve the bodies of the two flies. Each Gaussian is supposed to fit one fly.

The optimal parameters of the model are found by maximizing likelihood using the EM algorithm.

Figure 2f (main paper) shows two examples of how pairs of touching fliesare segmented using

this technique.

Fly discrimination The resolution at which our system operates (10 pix/mm) doesnot allow us

to resolve any other feature on a fruit fly besides the head, abdomen and wings. In particular, it is

impossible to discriminate individuals of the same sex. When this is needed a white dot is painted

on the back of one fly. The dot appears as a dark spot in the foreground imageFI , and as a peak

in the brightness histogram of the fly’s body. This peak is used to identify the labeled fly. Since

the dot is small and placed in the center of the thorax it does not affect the ellipse fitting (step four,

“Fly Detection & Tracking”). However, to compute the correct fly area and to make sure the dot

does not cause the image of the fly body to be split into two disconnected components, it is erased

by performing morphological operations on the binary imageof the segmented flies. For unlabeled

male-male pairs our software analyzes the past and current fly positions, along with the direction

of movement. The software assigns both objects to the most likely location producing continuous

fly-specific trajectories. Therefore, in principle, one mayobtain individual-specific trajectories.
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We have not tested how frequently the identity of the two fliesis exchanged. If one fly is a female

and the other one is a male, then identity may be determined directly and reliably from the apparent

size of each fly,Drosophila females being larger than the males.

Feature extraction The tracking module extracts 25 primary and derived features per frame de-

scribing the position, velocity, and shape of each fly (ten features per fly), as well as the mutual

position and velocity of the two flies (5 additional features; Fig. 2d,e,gandSupplementary Ta-

ble 1 online).

Velocitiesvx, vy at time t are computed by convolving fly position differencesof four con-

secutive frames at timest − 2...t + 1 with a Gaussian filter kernel of size three:










vx|t

vy|t











=
1

∆t











(xt−1 − xt−2) (xt − xt−1) (xt+1 − xt)

(yt−1 − yt−2) (yt − yt−1) (yt+1 − yt)











· [0.25 0.5 0.25]T (5)

The convolution smoothes the estimate of fly velocity and reduces the noise.∆t denotes the time

difference between two consecutive frames. The accelerationsax, ay at time t are computed as

follows:

ax|t =
vx|t+1 − vx|t−1

2∆t
ay|t =

vy|t+1 − vy|t−1

2∆t
. (6)

Example-based ClassificationAn example-based classifier was designed to detect lunging (cf.

main paper). Lunging is the concatenation of three phases: torso-raising, thrusting torso towards

and collapsing onto the opponent, and pulling the opponent.Each one of these phases is highly

variable in velocity and duration. The first two phases typically take only 46 ms1 and a single

lunging episode often happens in 2-3 frames when imaged at 30Hz.
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The three phases are detected in a two steps. First, a simple and inexpensive criterion is used

to select frames that are likely to contain lunges. During the first phase, a lunging fly will raise its

torso. Thus, its length will appear to become smaller and itsdistance from the other fly will appear

to increase. We flag all frames where this happens as ‘probable lunges’ by using the features listed

in Supplementary Table 2online and detecting frames when these features take valuesoutside

defined ranges.

Not all ‘probable lunges’ are actual lunges and we found it impossible to define feature ranges

that would uniquely detect lunges. Thus, one more step is needed for lunge detection. It is based

on supervised classification: given a number of training examples, i.e. instances of lunging that

were selected by an expert, we trained a classifier to decide whether a ‘probable lunge’ is actually

a lunge or not. We experimented with several classification methods and found that the k-Nearest

Neighbor (kNN) algorithm works best for our purpose9. At each frame of a movie our tracking

algorithm computes 10 features per fly: position, velocity,orientation etc. (seeSupplementary

Table 3online for the complete list). Thus, each positive (lunge) and negative (non-lunge) training

example is associated to a corresponding 10-dimensional feature vector at each frame. As positive

training examples we select feature vectors of flies and frames that are labelled as lunges in our

training database. A similar number of negative training samples is randomly chosen from frames

where we detected no lunge. Since the metric of the differentfeature-space dimensions varies, the

data need to be first ‘centered’ and then ‘sphered’; this normalization step is common practice in

pattern recognition and typically improves the performance of a classifier. Centering and sphering

consist of finding a new coordinate system where the set of feature vectorsv has zero mean and
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its covariance is the identity. In order to sphere them, featuresv are linearly transformed to a

variablev′ such that the covariance matrixc(v) equals unityE{v’v’ T} = I . To do so, we perform

an eigenvalue decomposition ofc by factorizing via singular value decomposition:

c = USV. (7)

We then transform the features so the covariance matrix of the transformed data is equal to the

identity:

v′ = vUS
−1/2. (8)

The covariance of v’ is now the identity.

Implementing a k-nearest neighbor classifier is simple: given an example to be classified,

we compute its k nearest neighbors in the training set. The example is classified as a lunge if the

majority of its k-nearest neighbors are also lunges, as a non-lunge otherwise. This idea may be

generalized by using a fractionν of the neighbors as the decision threshold (Fig. 4a, main paper).

Graphical User Interface We developed graphical user interfaces for hand-labeling the data to

estimate the ground truth, as well as for running the tracking and feature extraction software

(“QTrak”) as shown inFigure SM-4 andSupplementary Figure 6aonline. The two user in-

terfaces are similar: both allow importing movies in any kind of compressed or uncompressed

format assuming the appropriate video codecs are installedon the computer. The user selects one

movie, or a set of movies, and for calibration purposes within the tracking software also draws the

boundaries around each arena for arrays with more than two arenas (cf. ‘Calibration’). No fur-

ther manual adjustments are necessary. The import routine goes sequentially through the movies,
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frame by frame, and passes each frame into the labeling or tracking and feature extraction module

for processing. The information computed by both modules isstored into text files.

The labeling module allows the user to play a movie, stop at probable events, step forward

and backward in time, frame by frame, mark visible events (start- and end frame), and classify the

action regarding a set of given choices.

The tracking software is able to detect and track pairs of moving flies in parallel within mul-

tiple arenas. Its output is the trajectory (position, velocity, direction, head and abdomen position,

wings) for each fly in each arena as a function of time. The tracking module currently runs≈2.5x

slower than real-time, speeding it up to real-time appears possible.

The analysis module of our software system (“ANALYSIS”), asshown inSupplementary

Figure 6b online, is responsible for the detection and analysis of actions out of the trajectories,

provided by the tracking module. The analysis includes various action statistics, comparisons, and

ethograms.

Besides detecting and classifying actions, our software will output all detected actions in the

form of short video-clips, one per action, which allows an operator to quickly verify the quality

of the output by eye.Supplementary Figure 1online shows movie-clip examples of aggressive

and courtship actions that were detected automatically andsaved at 50% of the original spatial

resolution.
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5 Sources of Error

We identify six failure modes: (1) incomplete action execution, (2) blurring, (3) sudden move-

ments, (4) identity swapping, (5) boxing, tussling and wallclimbing attempts, (6) occlusion and

grouping and (7) imaging effects.Figure SM-8 gives examples of frames with problematic track-

ing situations. (1) Behaviors such as lunges are sometimes unusual by missing one of the 3

steps (i.e., the lunging fly would not stand on his hind-legs but simply thrusts directly towards

the opponent). (2) Flies can reach velocities of up to 0.85 ms−1 during flight phases10. This is

≈28 mm/frame at our current system’s sampling rate of 30 Hz. A fast moving fly does therefore

tend to be under-sampled and appears blurred (the object is stretched over two or more frames).

As long as the blurred object is distinguishable from the background (i.e., during the start and end

phases of a flight) the tracking module is able to track the object). However, the semi-transparent

wings can disappear in such cases, so that no information about wing position is available. Fast

moving flies are not analyzed and those frames with exceptional high velocities and accelerations

are discarded. Hence, no actions may be detected when flies are jumping or flying. (3, 4) Flies do

also perform sudden movements such as jumping, falling, or very fast lunges and tussling. There-

fore, they can appear at a very different location in the current frame compared to the previous one.

The changes of movements are carried out within a few hundredths of a second. This can cause

identity swapping between both opponents in case of unlabeled flies of the same sex. (5) Flies also

often try to climb the arena’s walls or occasionally stand near vertically while boxing or tussling.

They are visible from different sides and angles. The systemwill track the flies correctly in these

situations. Wing and dot detection as well as discrimination between head and abdomen are possi-
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ble as long as these parts stay visible. The moving directionand the orientation information from

the last frame are used as an additional information to find the correct orientation. For the detec-

tion of tussling the head and abdomen information are not necessary (cf. ’Tussling’ in main paper

andSupplementary Table 4online). However, our analysis module (Supplementary Figure 6b

online) allows the user to exclude the boundary zone (3 mm distance from the boundary) from the

analysis. (6) At times, flies will come in contact and, possibly, partially occlude each other. In such

cases the tracking software separates the flies by fitting twoGaussians to the object as explained in

section 4 andFigure 2f (main paper). (7) Inhomogeneous and non-stationary illumination condi-

tions, noise due to image compression and the camera, as wellas the color and edges of the food

area can increase the complexity of pattern recognition. Wings for instance are not always clearly

imaged and separable from the background. These issues are solvable by using a DC light (i.e.,

an LED array), low or no compression and an arena with a homogenous pattern (i.e., without a

food patch). A camera with higher resolution and frame rate,e.g. at 500 Hz, would dramatically

increase the amount of data and therefore necessary storageand computational power for analysis,

but it would only have minor effects on detection performance since the error rate is already low.
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Figure 1: 12-arena setup allowing to test one genotype per movie and camera (n = 12).

The arenas are drilled into plexiglass which lays on a 1% agar layer. A transparent and

slidable plexiglass lid with holes for fly introduction lays on top of the matrix. Food is

placed within the center of each arena. Alternatively the agar layer can be mixed with

food. All lengths in millimeter.
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Figure 2: Dimensions of a fly in pixel as seen by our system. A white dot is painted on its

back. 10 pixel ≈1 mm.
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Figure 3: Magnification of a video frame showing part of an arena with two flies. The

frame was coded as uncompressed AVI (top-left) and with three different compression

codecs (MPEG-4 V2, WMV9, DivX). WMV9 was chosen for best quality and low noise at

high compression rate. The arrows point at some of the compression artifacts that can

occur and can be problematic for wing detection. In the background the three different

patterns of the arena: food, agar, teflon.
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Figure 4: Labeling software for annotating movie sequences by hand and producing

ground truth. The user can load and play a movie at different speeds, stop at any frame,

go back and forward frame by frame, label start- and end-frame of an event, and chose

the event type from the list on the right-hand side.
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Figure 5: Fly detection and tracking scheme.
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a b c

Figure 6: Segmentation results for full fly detection in problematic, non-standard situations

with background noise and brightness-value close to the brightness-value of the wings.

(a) ‘Foreground’ image, (b) optimal thresholds segmentation with five components8, (c)

GMM segmentation with five components using brightness values and pixel locations.

Optimal thresholds performs 5-10x faster than GMM and is not dependent on the shape

of the object.
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Figure 7: Scatter diagram comparing automatic wing angle with ground truth data (right

and left wing). Good segmentations are indicated by dots. Segmentations that were eval-

uated as not complete are represented by crosses and head-tail swaps by triangles. The

automatically measured wing angle is defined to be the angle between the center of fly

body ellipse, the ellipse’ long axis, and wing tip as described in Figure 2d (main paper).

The ground truth wing angle is defined to be the angle between the head-abdomen center

point, the head-abdomen axis, and the wing tip. This definition difference and the free-

dom of choice for the expert’s clicks on head, abdomen, and wings causes a variation of

≈5◦ between ground truth and automated measurements. The detectable minimum wing

angle is 20◦.

25
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Figure 8: Examples for problematic tracking situations: flies can appear blurred due to

temporal under-sampling, stay at the border, appear as one object when they are in very

close proximity, and escape by flying towards the ceiling.
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